ampliconnoise.py – Run AmpliconNoise
Description:
The steps performed by this script are:
- Split input sff.txt file into one file per sample
- Run scripts required for PyroNoise
- Run scripts required for SeqNoise
- Run scripts requred for Perseus (chimera removal)
- Merge output files into one file similar to the output of split_libraries.py
This script produces a denoised fasta sequence file such as:
>PC.355_41
CATGCTGCCTC...
...
>PC.636_23
CATGCTGCCTC...
...
Additionally, the intermediate results of the ampliconnoise pipeline are
written to an output directory.
Ampliconnoise must be installed and correctly configured, and parallelized
steps will be called with mpirun, not qiime’s start_parallel_jobs_torque.py script.
Usage: ampliconnoise.py [options]
Input Arguments:
Note
[REQUIRED]
- -m, --mapping_fp
- The mapping filepath
- -i, --sff_filepath
- Sff.txt filepath
- -o, --output_filepath
- The output file
[OPTIONAL]
- -n, --np
- Number of processes to use for mpi steps. Default: 2
- --chimera_alpha
- Alpha value to Class.pl used for chimera removal Default: -3.8228
- --chimera_beta
- Beta value to Class.pl used for chimera removal Default: 0.62
- --seqnoise_resolution
- -s parameter passed to seqnoise. Default is 25.0 for titanium, 30.0 for flx
- -d, --output_dir
- Directory for ampliconnoise intermediate results. Default is output_filepath_dir
- -p, --parameter_fp
- Path to the parameter file, which specifies changes to the default behavior. See http://www.qiime.org/documentation/file_formats.html#qiime-parameters. [if omitted, default values will be used]
- -f, --force
- Force overwrite of existing output directory (note: existing files in output_dir will not be removed) [default: False]
- -w, --print_only
- Print the commands but don’t call them – useful for debugging [default: False]
- --suppress_perseus
- Omit perseus from ampliconnoise workflow
- --platform
- Sequencing technology, options are ‘titanium’,’flx’. [default: flx]
Output:
a fasta file of sequences, with labels as:’>sample1_0’ , ‘>sample1_1’ ...
Run ampliconnoise, write output to anoise_out.fna, compatible with output of split_libraries.py
ampliconnoise.py -i Fasting_Example.sff.txt -m Fasting_Map.txt -o anoise_out.fna