parallel_assign_taxonomy_uclust.py – Parallel taxonomy assignment using the uclust consensus taxonomy assignment
Description:
This script performs like the assign_taxonomy.py script, but is intended to make use of multicore/multiprocessor environments to perform analyses in parallel.
Usage: parallel_assign_taxonomy_uclust.py [options]
Input Arguments:
Note
[REQUIRED]
- -i, --input_fasta_fp
- Full path to fasta file containing query sequences [REQUIRED]
- -o, --output_dir
- Path to store output files [REQUIRED]
[OPTIONAL]
- -t, --id_to_taxonomy_fp
- Full path to id_to_taxonomy mapping file [default: /Users/caporaso/data/gg_13_5_otus/taxonomy/97_otu_taxonomy.txt]
- -r, --reference_seqs_fp
- Ref seqs to search against. [default: /Users/caporaso/data/gg_13_5_otus/rep_set/97_otus.fasta]
- --uclust_min_consensus_fraction
- Minimum fraction of database hits that must have a specific taxonomic assignment to assign that taxonomy to a query [default: 0.51]
- --uclust_similarity
- Minimum percent similarity to consider a database match a hit [default: 0.9]
- --uclust_max_accepts
- Number of database hits to consider when making an assignment [default: 3]
- -O, --jobs_to_start
- Number of jobs to start [default: 2]
- -R, --retain_temp_files
- Retain temporary files after runs complete (useful for debugging) [default: False]
- -S, --suppress_submit_jobs
- Only split input and write commands file - don’t submit jobs [default: False]
- -T, --poll_directly
- Poll directly for job completion rather than running poller as a separate job. If -T is specified this script will not return until all jobs have completed. [default: False]
- -U, --cluster_jobs_fp
- Path to cluster jobs script (defined in qiime_config) [default: start_parallel_jobs.py]
- -W, --suppress_polling
- Suppress polling of jobs and merging of results upon completion [default: False]
- -X, --job_prefix
- Job prefix [default: descriptive prefix + random chars]
- -Z, --seconds_to_sleep
- Number of seconds to sleep between checks for run completion when polling runs [default: 1]
Output:
Mapping of sequence identifiers to taxonomy and quality information.
Example:
Assign taxonomy to all sequences in the input file (-i) using the uclust consensus taxonomy assigner and write the results (-o) to $PWD/uclust_assigned_taxonomy/. ALWAYS SPECIFY ABSOLUTE FILE PATHS (absolute path represented here as $PWD, but will generally look something like /home/ubuntu/my_analysis/).
parallel_assign_taxonomy_uclust.py -i $PWD/inseqs.fasta -o $PWD/uclust_assigned_taxonomy/