1 Step 0. Connect to IPython Cluster

```python
from IPython import parallel
rc = parallel.Client(packer='pickle')
view = rc.load_balanced_view()
print "We have %i engines available" % len(rc.ids)
# skip cached results (for faster debugging)
rc[:]['skip_cache'] = False
```

We have 16 engines available

A utility for monitoring progress while waiting on anAsyncResult:

```python
import sys
from datetime import datetime
from IPython.core.display import clear_output

def wait_on(ar):
    N = len(ar.msg_ids)
    rc = ar._client
    submitted = rc.metadata[ar.msg_ids[0]]['submitted']
    
    while not ar.ready():
        ar.wait(1)
        progress = sum([msg_id not in rc.outstanding for msg_id in ar.msg_ids])
        dt = (datetime.now()-submitted).total_seconds()
        clear_output()
        print '%3i/%3i tasks finished after %4i s' % (progress, N, dt),
        sys.stdout.flush()

print
print "done"
```

2 Step 1. Slice alignments

```python
base_region_boundaries = [
    ('v2', 136, 1868), #27f-338r
    ('v2.v3', 136, 2232),
    ('v2.v4', 136, 4051),
    ('v2.v6', 136, 4932),
    ('v2.v8', 136, 6426),
    ('v2.v9', 136, 6791),
    ('v3', 1916, 2232), #349f-534r
    ('v3.v4', 1916, 4051),
    ('v3.v6', 1916, 4932),
    ('v3.v8', 1916, 6426),
    ('v3.v9', 1916, 6791),
    ('v4', 2263, 4051), #515f-806r
    ('v4.v6', 2263, 4932),
    ('v4.v8', 2263, 6426),
]
```
print "%i regions, which we will break up into tasks to be done in parallel" % len(base_region_boundaries)

If we want to use multiple seq_files, that’s a nested list:

sub_alignments = []
for seq_file in seq_files:
 for region_boundary in region_boundaries:
 sub_alignments.append(load_sub_alignment(seq_file, region_boundary))

This can actually be transformed into a flat list suitable for map with clever use of itertools.product:

import itertools
list_of_tuples = itertools.product(base_percentages, base_region_boundaries)
percentages, region_boundaries = zip(*list_of_tuples)
seq_files = [seq_file_base % i for i in percentages]
labels = ["%i.%s" % (p,r) for p,r in zip(percentages, region_boundaries)]

ntasks = len(region_boundaries)
ntasks

Loading data is an expensive operation. This takes the most time, of any steps
def load_sub_alignment(seq_file, region_boundary):
 """load subregion of data into new file""
 from cogent import LoadSeqs
 from cogent.core.alignment import DenseAlignment
 import os
 id_, start, end = region_boundary
 base, ext = os.path.splitext(os.path.basename(seq_file))
 sub_fname = '/home/ubuntu/data/' + base + '_%s' % id_ + ext
 if skip_cache and os.path.exists(sub_fname):
 # skip if we've already generated it
 return sub_fname
 aln = LoadSeqs(seq_file, aligned=DenseAlignment)
 sub_alignment = aln.takePositions(range(start, end))
 sub_alignment.writeToFile(sub_fname)
 return sub_fname

Submit the loads to be done in parallel

amr = load_amr = view.map_async(load_sub_alignment, seq_files, region_boundaries)

Submission is asynchronous, and returns immediately.
Now we wait for the computations to actually finish, returning the list of filenames for the subregions.

this will take time

wait_on(amr)
sub_aligns = amr.get()
sub_aligns

32/ 32 tasks finished after 236 s

done
['/home/ubuntu/data/gg_82_otus_4feb2011_aligned_v2.fasta',
 ' /home/ubuntu/data/gg_82_otus_4feb2011_aligned_v2.v3.fasta',
 ' /home/ubuntu/data/gg_82_otus_4feb2011_aligned_v2.v4.fasta',
 ' /home/ubuntu/data/gg_82_otus_4feb2011_aligned_v2.v6.fasta',
 ' /home/ubuntu/data/gg_82_otus_4feb2011_aligned_v2.v8.fasta',
 ' /home/ubuntu/data/gg_82_otus_4feb2011_aligned_v2.v9.fasta',
 ' /home/ubuntu/data/gg_82_otus_4feb2011_aligned_v3.fasta',
 ' /home/ubuntu/data/gg_82_otus_4feb2011_aligned_v3.v4.fasta',
 ' /home/ubuntu/data/gg_82_otus_4feb2011_aligned_v3.v6.fasta',
 ' /home/ubuntu/data/gg_82_otus_4feb2011_aligned_v3.v8.fasta',
 ' /home/ubuntu/data/gg_82_otus_4feb2011_aligned_v3.v9.fasta',
 ' /home/ubuntu/data/gg_82_otus_4feb2011_aligned_v4.fasta',
 ' /home/ubuntu/data/gg_82_otus_4feb2011_aligned_v4.v6.fasta',
 ' /home/ubuntu/data/gg_82_otus_4feb2011_aligned_v4.v8.fasta',
 ' /home/ubuntu/data/gg_82_otus_4feb2011_aligned_v4.v9.fasta',
 ' /home/ubuntu/data/gg_82_otus_4feb2011_aligned_v6.fasta',
 ' /home/ubuntu/data/gg_82_otus_4feb2011_aligned_v6.v8.fasta',
 ' /home/ubuntu/data/gg_82_otus_4feb2011_aligned_v6.v9.fasta',
 ' /home/ubuntu/data/gg_82_otus_4feb2011_aligned_v9.fasta',
']
'/home/ubuntu/data/gg_82_otus_4feb2011_aligned_full.length.fasta',
'/home/ubuntu/data/gg_82_otus_4feb2011_aligned_v2.150.fasta',
'/home/ubuntu/data/gg_82_otus_4feb2011_aligned_v2.250.fasta',
'/home/ubuntu/data/gg_82_otus_4feb2011_aligned_v2.v3.400.fasta',
'/home/ubuntu/data/gg_82_otus_4feb2011_aligned_v3.v4.150.fasta',
'/home/ubuntu/data/gg_82_otus_4feb2011_aligned_v3.v4.250.fasta',
'/home/ubuntu/data/gg_82_otus_4feb2011_aligned_v3.v4.400.fasta',
'/home/ubuntu/data/gg_82_otus_4feb2011_aligned_v4.150.fasta',
'/home/ubuntu/data/gg_82_otus_4feb2011_aligned_v4.250.fasta',
'/home/ubuntu/data/gg_82_otus_4feb2011_aligned_v4.v6.400.fasta',
'/home/ubuntu/data/gg_82_otus_4feb2011_aligned_v6.v8.150.fasta',
'/home/ubuntu/data/gg_82_otus_4feb2011_aligned_v6.v8.250.fasta',
'/home/ubuntu/data/gg_82_otus_4feb2011_aligned_v6.v8.400.fasta'

Now let’s take a quick peek at the overhead of performing this computation with IPython

def print_parallel_stats(ar):
 """print some performance info for a givenAsyncResult""
 ar.wait()
 serial = 0.
 times = []
 for start,stop in zip(ar.started, ar.completed):
 elapsed = (stop-start).total_seconds()
 times.append(elapsed)
 longest = max(times)
 serial = sum(times)
 finished = max(ar.received)
 submitted = min(ar.submitted)
 wall = (finished - submitted).total_seconds()
 bar(range(len(times)), sorted(times))
 xlim(0, ntasks)
 ylabel("time (s)")
 title("min=%is max=%is \% (min(times), max(times))")
 print "ran %.1fs of work in %.1fs in %i tasks on %i engines" % (serial, wall, len(ar.
 msg_ids), len(rc.ids))
 print "for a speedup of %.1fx" % (serial/wall)
 print "longest task was %.1fs, which is the best we could hope to do." % (longest)
 print "IPython overhead: %ipm" % (1e6*(wall-longest)/longest)

print_parallel_stats(load_amr)

ran 1397.5s of work in 236.3s in 32 tasks on 16 engines
for a speedup of 5.9x
longest task was 129.3s, which is the best we could hope to do.
IPython overhead: 826950ppm
3 Step 2. Filter hypervariable positions and mostly gapped positions

```python
def filter_alignment(fname):
    """call out to subcommand, which filters the positions""
    import os
    import subprocess
    cmd = "filter_alignment.py -i %s -e 0.1 -g 0.8 --suppress_lane_mask_filter -o /home/ubuntu/data/" % fname
    # RUN cmd
    subprocess.call(cmd, shell=True)
    base, ext = os.path.splitext(fname)
    filtered = base + '_pfiltered' + ext
    return filtered
```

This one is quick, so we do it synchronously, but still in parallel:

```bash
%time filtered = view.map_sync(filter_alignment, sub_aligns)
```

CPU times: user 0.51 s, sys: 0.07 s, total: 0.58 s
Wall time: 5.37 s

4 Step 3. Build trees in parallel

```python
def build_tree(filtered_aln_fp):
    """build tree from a filtered alignment""
    import os
    from cogent import LoadSeqs
    from cogent.core.alignment import DenseAlignment
    from cogent.app.fasttree import build_tree_from_alignment

    %time build_tree = build_tree_from_alignment(filtered_aln_fp)
```

CPU times: user 0.62 s, sys: 0.03 s, total: 0.65 s
Wall time: 5.74 s
from cogent import DNA

tree_fp = '%s.tre' % os.path.splitext(filtered_aln_fp)[0]
if skip_cache and os.path.exists(tree_fp):
 # skip already done
 return tree_fp

tree = build_tree_from_alignment(LoadSeqs(filtered_aln_fp, aligned=DenseAlignment),
 moltype=DNA)

tree.writeToFile(tree_fp, with_distances=True)

return tree_fp

This is the other step that takes some real time.

this will take time

amr = tree_amr = view.map_async(build_tree, filtered)

wait_on(amr)
trees = amr.get()

32/ 32 tasks finished after 200 s
done

print_parallel_stats(tree_amr)

ran 1299.5s of work in 200.1s in 32 tasks on 16 engines
for a speedup of 6.5x
longest task was 100.7s, which is the best we could hope to do.
IPython overhead: 986627ppm
5 Step 4. Compute distances between trees

`compare_trees()` computes the distance submatrix corresponding to a given tree.

```python
def compare_trees(list_of_tree_files, i, nreps=50, sample_percent=0.1):
    """compute section of distance matrix for a single tree""
    from cogent.parse.tree import DndParser
    from numpy import zeros, mean

    trees = [DndParser(open(f)) for f in list_of_tree_files]
    dist_mat = zeros((len(trees), len(trees)))
    t1 = trees[i]
    t1_ntips = len(t1.tips())
    for dj, t2 in enumerate(trees[i+1:]):
        j = i+dj+1
        sample_size = int(round((min(t1_ntips, len(t2.tips())) * sample_percent)))
        distances = [t1.compareByTipDistances(t2, sample=sample_size) for r in range(nreps)]
        dist_mat[i,j] = mean(distances)
        dist_mat[j,i] = mean(distances)
    return dist_mat
```

For instance, the distance elements for the third-to-last tree:

```
%precision 3
compare_trees(trees, ntasks-3)
```

```
array([[ 0. , 0. , 0. , ..., 0. , 0. , 0. ],
       [ 0. , 0. , 0. , ..., 0. , 0. , 0. ],
       [ 0. , 0. , 0. , ..., 0. , 0. , 0. ],
       ..., 
       [ 0. , 0. , 0. , ..., 0. , 0.087, 0.132],
       [ 0. , 0. , 0. , ..., 0.087, 0. , 0. ],
       [ 0. , 0. , 0. , ..., 0.132, 0. , 0. ]])
```

We can then compute these submatrices in parallel

```python
map_trees = [trees]*ntasks
amr = view.map_async(compare_trees, map_trees, range(ntasks)[::-1], ordered=False)
```

And compute the final distance matrix by perorming a sum (via builtin `reduce()`) this will take the most time

```python
def _print_progress(ar):
    N = len(ar.msg_ids)
    rc = ar._client
    submitted = rc.metadata[ar.msg_ids[0]]['submitted']
    progress = sum([msg_id not in rc.outstanding for msg_id in ar.msg_ids])
    dt = (datetime.now()-submitted).total_seconds()
    clear_output()
    print "%4i/%3i tasks finished after %4i s" % (progress, N, dt),
```
sys.stdout.flush()

def progress_sum(a, b):
 c = a + b
 _print_progress(amr)
 return c

dist_mat = reduce(progress_sum, amr, 0)
dist_mat.tofile('/home/ubuntu/data/dist_mat_fast.np')

32/32 tasks finished after 174 s

Now we can peek at the distance matrix, to see if there is anything interesting.

Uncomment here to load dist_mat from cache, to regenerate plots
import numpy
dist_mat = numpy.fromfile('/home/ubuntu/data/dist_mat.np').reshape(ntasks,ntasks)

pcolor(dist_mat)
xlim(0,ntasks)
ylim(0,ntasks)
colorbar()

<matplotlib.colorbar.Colorbar instance at 0x7fd8b47161b8>

Write QIIME’s distance matrix format

from qiime.format import format_distance_matrix

open('/home/ubuntu/data/distance_matrix_fast.txt', 'w').write(format_distance_matrix(labels, dist_mat))
6 Step 5. Compute PCoA: QIIME/PyCogent

```
principal_coordinates.py -i /home/ubuntu/data/distance_matrix_fast.txt -o /home/ubuntu/data/pc_fast.txt
```

7 Step 6. Display PCoA: QIIME

This generates an HTML file and java visualization for the data. To do this we need one additional file: tree_metadata.txt. You can view this file directly here.

```
wget http://qiime.org/home_static/nih-cloud-apr2012/tree_metadata.txt
```

Resolving qiime.org... 216.34.181.97
Connecting to qiime.org|216.34.181.97|:80... connected.
HTTP request sent, awaiting response...
200 OK
Length: 9313 (9.1K) [text/plain]
Saving to: `tree_metadata.txt`

```
0% [ ] 0 --.-K/s
100%[========================================] 9,313 --.-K/s in 0.02s
```

We can then generate 3D PCoA plots.

```
make_3d_plots.py -i /home/ubuntu/data/pc_fast.txt -o /home/ubuntu/data/pcoa_plots/ -m /home/ubuntu/tree_metadata.txt
```

And the notebook simply serves these files up in `files`, so we can visit the visualization directly.

NOTE: The above link is not static: to view the plot, you must run the notebook.