beta_diversity_through_plots.py – A workflow script for computing beta diversity distance matrices and generating PCoA plots
Description:
This script will perform beta diversity, principal coordinate analysis, and generate a preferences file along with 3D PCoA Plots.
Usage: beta_diversity_through_plots.py [options]
Input Arguments:
Note
[REQUIRED]
- -i, --otu_table_fp
- The input biom table [REQUIRED]
- -m, --mapping_fp
- Path to the mapping file [REQUIRED]
- -o, --output_dir
- The output directory [REQUIRED]
[OPTIONAL]
- -t, --tree_fp
- Path to the tree file [default: None; REQUIRED for phylogenetic measures]
- -p, --parameter_fp
- Path to the parameter file, which specifies changes to the default behavior. See http://www.qiime.org/documentation/file_formats.html#qiime-parameters . [if omitted, default values will be used]
- --color_by_all_fields
- Plots will have coloring for all mapping fields [default: False; only include fields with greater than one value and fewer values than the number of samples]
- -f, --force
- Force overwrite of existing output directory (note: existing files in output_dir will not be removed) [default: None]
- -w, --print_only
- Print the commands but don’t call them – useful for debugging [default: False]
- -a, --parallel
- Run in parallel where available [default: False]
- -e, --seqs_per_sample
- Depth of coverage for even sampling [default: None]
- --suppress_emperor_plots
- Do not generate emperor plots [default: False]
- -O, --jobs_to_start
- Number of jobs to start. NOTE: you must also pass -a to run in parallel, this defines the number of jobs to be started if and only if -a is passed [default: 1]
Output:
This script results in a distance matrix (from beta_diversity.py), a principal coordinates file (from principal_coordinates.py), and folders containing the resulting PCoA plots (accessible through html files).
Example:
Given an OTU table, a phylogenetic tree, an even sampling depth, and a mapping file, perform the following steps: 1. Randomly subsample otu_table.biom to even number of sequences per sample (100 in this case); 2. Compute a weighted and unweighted unifrac distance matrices (can add additional metrics by passing a parameters file via -p); 3. Peform a principal coordinates analysis on the result of Step 2; 4. Generate a 2D and 3D plots for all mapping fields.
beta_diversity_through_plots.py -i otu_table.biom -o bdiv_even100/ -t rep_set.tre -m Fasting_Map.txt -e 100