News and Announcements » |
Description:
Usage: filter_samples_from_otu_table.py [options]
Input Arguments:
Note
[REQUIRED]
[OPTIONAL]
Output:
Abundance filtering (low coverage):
Filter samples with fewer than 150 observations from the otu table.
filter_samples_from_otu_table.py -i otu_table.biom -o otu_table_no_low_coverage_samples.biom -n 150
Abundance filtering (high coverage):
Filter samples with greater than 149 observations from the otu table.
filter_samples_from_otu_table.py -i otu_table.biom -o otu_table_no_high_coverage_samples.biom -x 149
Metadata-based filtering (positive):
Filter samples from the table, keeping samples where the value for ‘Treatment’ in the mapping file is ‘Control’
filter_samples_from_otu_table.py -i otu_table.biom -o otu_table_control_only.biom -m map.txt -s 'Treatment:Control'
Metadata-based filtering (negative):
Filter samples from the table, keeping samples where the value for ‘Treatment’ in the mapping file is not ‘Control’
filter_samples_from_otu_table.py -i otu_table.biom -o otu_table_not_control.biom -m map.txt -s 'Treatment:*,!Control'
ID-based filtering:
Keep samples where the id is listed in ids.txt
filter_samples_from_otu_table.py -i otu_table.biom -o filtered_otu_table.biom --sample_id_fp ids.txt
ID-based filtering (negation):
Discard samples where the id is listed in ids.txt
filter_samples_from_otu_table.py -i otu_table.biom -o filtered_otu_table.biom --sample_id_fp ids.txt --negate_sample_id_fp